Recognize and explain the need for repeated experimental trials.
Name |
Description |
Just Right Goldilocks’ Café: Temperature & Turbidity | This is lesson 3 of 3 in the Goldilocks’ Café Just Right unit. This lesson focuses on systematic investigation on getting a cup of coffee to be the “just right” temperature and turbidity level. Students will use both the temperature probe and turbidity sensor and code using ScratchX during their investigation. |
Just Right Goldilocks’ Café: Turbidity | This is lesson 2 of 3 in the Just Right Goldilocks’ Café unit. This lesson focuses on systematic investigation on getting a cup of coffee to be the “just right” level of turbidity. Students will use turbidity sensors and code using ScratchX during their investigation. |
Just Right Goldilocks’ Café: Temperature | This is lesson 1 of 3 in the Just Right Goldilocks’ Café unit. This lesson focuses on systematic investigation on getting a cup of coffee to be the “just right” temperature. Students will use temperature probes and code using ScratchX during their investigation.
|
Catch Me If You Can: Engineering Design Challenge | In this lesson, 5th grade students work in small groups on a STEM challenge that involves science and math standards related to the water cycle, as well as learning the engineering design process. |
Marbelous Pool Noodle Ramps | In this lesson, students will build a ramp out of a pool noodle and use it to launch a marble across the room. Students will investigate by adjusting the height and slope of the ramp and record their findings on a data sheet. Students will practice collecting and analyzing data and will investigate the importance of performing repeated experimental trials. Students will practice converting metric units of distance as well as the addition and division of decimals to find the mean of a small data set. |
The Coasta with the Mosta | Students will create an exciting and thrilling roller coaster model. Students will use their knowledge of forces to build a model of a roller coaster using foam insulation and a marble. |
Medic Mass Landing: Engineering Design Challenge | In this lesson, 5th grade students work in small groups on a STEM challenge that involves science and math standards related to force, motion, and measurement, as well as learning the engineering design process. |
Paper Airplanes Away! | In this lesson, students will design and fly their own paper airplane and analyze their flight data to determine the best designs for getting planes to travel the farthest distance. Students will organize class flight data into a line plot and calculate the mean, median, mode, and range for the data set. |
Pendulum Inquiry - Wrecking Balls | In this lesson, students will mimic a wrecking ball by manipulating the variables of a pendulum in order to move objects with different masses. It is recommended this lesson follow Pendulum Inquiry (see CPALMS Resource #28568), which will build students' content knowledge on pendulums. Students can apply their understanding of pendulums gained from the lesson Pendulum Inquiry to assist them in designing wrecking ball pendulums in this lesson. |
You Be the Judge | In this model eliciting activity (MEA), students will learn a common version of the scientific method by making them the judges of a science fair. In order to judge the science fair projects they have to evaluate the importance of each step of the scientific method and assign a value to it.
Model Eliciting Activities, MEAs, are open-ended, interdisciplinary problem-solving activities that are meant to reveal students’ thinking about the concepts embedded in realistic situations. MEAs resemble engineering problems and encourage students to create solutions in the form of mathematical and scientific models. Students work in teams to apply their knowledge of science and mathematics to solve an open-ended problem while considering constraints and tradeoffs. Students integrate their ELA skills into MEAs as they are asked to clearly document their thought processes. MEAs follow a problem-based, student-centered approach to learning, where students are encouraged to grapple with the problem while the teacher acts as a facilitator. To learn more about MEAs visit: https://www.cpalms.org/cpalms/mea.aspx |
To Dissolve or Not To Dissolve, Part 1 | This lesson uses the 5E model as students explore how various substances will dissolve. This is the first in a two part lesson. In the second lesson, students will compare how a substance will dissolve in varying temperatures. Students will learn about dissolving, mixtures, solutions and solubility. |
Pop Goes the Balloon, a Rube Goldberg Design Project | The students will work in small groups in order to build a "Rube Goldberg" machine. A "Rube Goldberg" machine is modeled after a famous cartoonist who tried to make more difficult ways to accomplish simple tasks, such as popping a balloon. The students will build one machine, made from many simple machines working together, to perform their task. The machine is only permitted to be touched at the beginning and must work independently from that point on. |
Investigating Variables | In this inquiry lesson, students will design an experiment to answer the question "How do different surfaces affect the bounce of a ping pong ball?" Students will collect and analyze data as well as identify controls and variables in a scientific experiment. |
3 Methods for Measuring Volume | This hands-on lesson plan allows students to investigate three methods for measuring volume. Students will learn to measure volume for liquids, regular-sized solids, and irregular sized objects. During the lesson students are exposed to demonstrations from the teacher and will participate in hands-on investigations utilizing three methods for measuring volume that they conduct and report to the class. |
To Dissolve or Not To Dissolve, Part 2 | This is part 2 of a lesson addressing solubility. Part 1 addresses how varying substances will dissolve in water. Part 2 addresses how temperature will effect solubility and the 5E lesson plan model will include a lab. |
Transformation of Energy: Constructing an Electromagnet | In this hands-on lesson, students will work in groups to construct an electromagnet. This lesson focuses energy, forms of energy, and how energy is transformed in a circuit. This lesson also can be used to address variables in an experiment, conductors and insulators, data tables and graphs, and open and closed circuits. |