Describe the structures of proteins and amino acids. Explain the functions of proteins in living organisms. Identify some reactions that amino acids undergo. Relate the structure and function of enzymes.
Course Number1111 |
Course Title222 |
2000360: | Anatomy and Physiology Honors (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 - 2024, 2024 and beyond (current)) |
2000320: | Biology 1 Honors (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 - 2024, 2024 and beyond (current)) |
3027010: | Biotechnology 1 (Specifically in versions: 2015 - 2022, 2022 and beyond (current)) |
2003360: | Chemistry 2 Honors (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 - 2024, 2024 and beyond (current)) |
2002490: | Forensic Sciences 2 (Specifically in versions: 2014 - 2015, 2015 - 2017, 2017 - 2022, 2022 - 2024, 2024 and beyond (current)) |
2002410: | Integrated Science 1 Honors (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 - 2024, 2024 and beyond (current)) |
2000510: | Bioscience 2 Honors (Specifically in versions: 2014 - 2015, 2015 - 2022, 2022 - 2023, 2023 - 2024, 2024 and beyond (current)) |
Name |
Description |
The Last Supper: Identifying Macromolecules | The students will solve a mystery using laboratory tests for different types of macromolecules. They will use argumentation to justify and communicate their claim. They will construct explanations and communicate with one another to determine which macromolecule would be best to eat in different scenarios. Students will be able to identify the structure and functions of the four main types of macromolecules. The students will use laboratory testing to determine the identity of an unknown. They will fill in a chart about the structures, functions, and examples for each macromolecule type and then they will practice their knowledge by answering short response questions relating the macromolecules to the real world. Finally, they will review using a whole-class cooperative activity and take a quiz about the structures and functions of macromolecules. |
Protein Folding: Predicting Structure | In this lesson students will explore the different levels of protein structure with hands on manipulative to relate protein structures with their function. In addition, students will predict possible effects on protein function when the protein structure has been altered. |
Loss of Vision in Astronauts | In this lesson plan, students will analyze an intended to support reading in the content area. The article addresses the results of a new study that will help researchers identify which astronauts will develop vision problems in space. The text describes how Scott M. Smith from the Biomedical Research and Environmental Sciences Division at NASA's Johnson Space Center has found a metabolic pathway that is directly related to the vision problems some astronauts encounter. This pathway, called the one carbon metabolism pathway, moves single atoms from one organic compound to another. Astronauts who develop vision problems have been found to have a different genetic variant, which changes the way the enzymes of this pathway work. This will also affect people on Earth, as the same enzymes are also used here and are linked to other medical problems. The lesson plan includes a note-taking guide, text-dependent questions, a writing prompt, answer keys, and a writing rubric. Numerous options to extend the lesson are also included. |
Got Lactase? | This lesson will allow students to observe and identify evidence of an enzyme's activity, lactase, and its function, and action on a substrate found in milk, lactose. They will then relate the absence of lactase to the condition of lactose intolerance, which many students or family members of students experience. Enzymes are a type of protein essential to life and necessary for many of the metabolic reactions that occur in the human body. Since these reactions occur at the molecular level within the body, students do not directly observe enzymes functioning. |
Protein Synthesis: Transcription & Translation | Students will explore the process of protein synthesis, specifically transcription and translation, using a sequenced graphic organizer and an interactive simulation (Lesson 1 & 2).
This resource contains 3 lessons:
- Lesson 1: Transcription & Translation
- Lesson 2: Lac Operon
- Lesson 3: Proteins & Cancer
As an extension (Lesson 3) the students will justify the applications of biotechnology that uses transcription and translation to synthesize proteins that target cancer cells or reason the possibilities of the amplification of antibodies using immortal cells.
They will explore how mutations, genetic or epigenetic (lifestyle-chemicals, radiation, viruses), resulting in cancer.
The student will connect changes that occur in the genetic code, during transcription and translation, to the deleterious impact on proto oncogenes that promote cell division and tumor suppressor genes that normally inhibit it. |